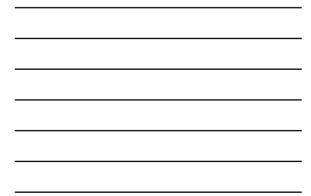
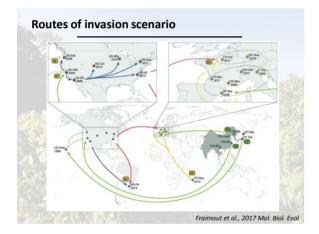
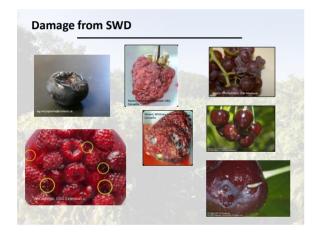

Two invasive species that threaten fruit production: spotted-wing drosophila & brown marmorated stink bug

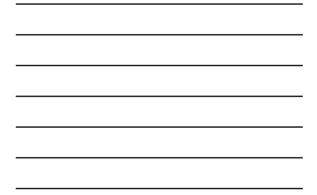


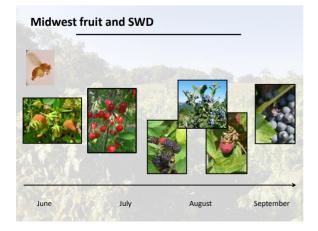
Spotted-Wing Drosophila: SWD

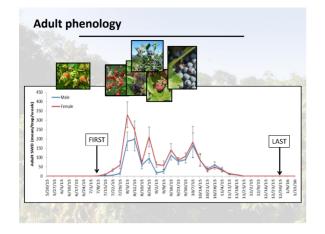
Diptera: Drosophilidae: Drosophila suzukii

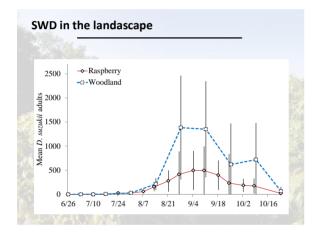




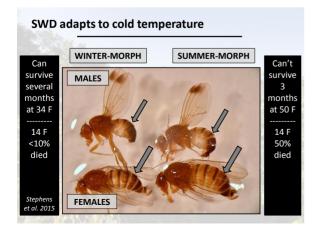

US Distribution and economics

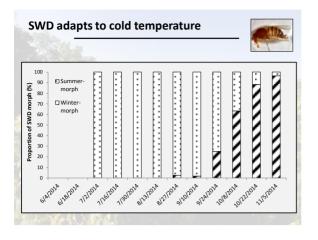

- First detected in California in 2008
- Crop losses estimated at \$720 million annually
- Costs of SWD management estimated at \$130-170 million

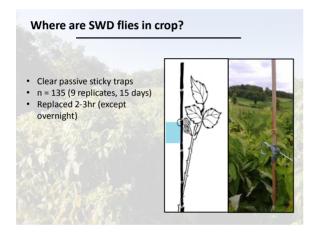

lighest risk	Moderate risk	Alternate hosts
aspberries	Peaches	Snowberry
lueberries	Grapes	Elderberry
herries	Pears	Pokeweed
lackberries	Nectarines	Dogwood
trawberries		Honeysuckle
		Bittersweet nightshade

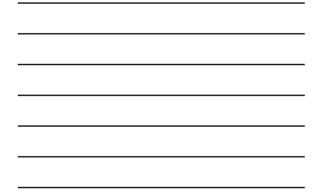


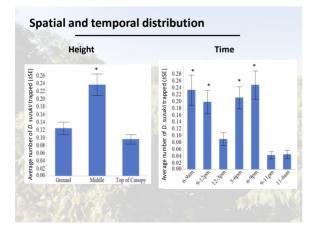


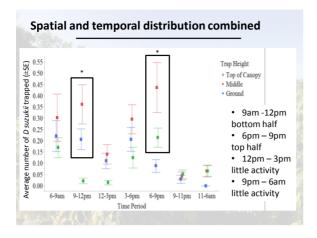


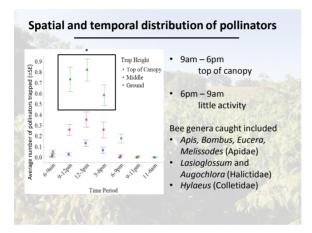


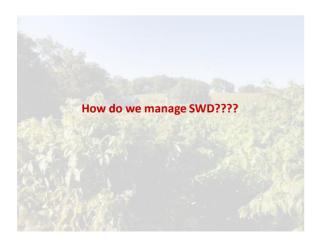












Monitoring

- Start monitoring in late May
- 1 trap/acre, check at least once/week
- Monitor in crop and near woody areas
- YS trap: good homemade bait for monitoring

Active Dry Yeast: 1.69g

White Sugar: 8.45g

Unscented soap: a few drops Water: 150ml

Detection

To see presence of eggs on berry surface: Look for breathing tubes and pits on fruit surface

To check for larvae:

- Collect sample of coloring fruit
- Place fruits in Ziploc bag
- Crush fruit lightly to break fruit
- Add salt-water mixture (4 cups water ¼ cup salt)
- Leave fruit in mixture for 1h
- Look for larvae floating in the liquid (eggs and smaller larvae difficult to detect)

SWD management

Cultural control: Minimize build up of SWD

- Remove native wild hosts (apples, plums, dogwood, honeysuckle,...)
- Schedule short harvest intervals (2-days)
- Remove over-ripe fruit from field as soon as possible to minimize
 SWD egg lay and larval development

Cultural control

Sanitation: Dispose off fruit

- Bag fruit inside plastic bag, seal, and solarize
- Place clear plastic sheeting over fruit in sunny location and seal around edge with soil (solarize)
- Collected fruits should be used, destroyed or buried

Do NOT compost infested fruit! If bury fruit, at least 1 ft deep

Cultural control

Canopy and water management

- Prune plants to maintain an open canopy, less attractive to SWD, and improves spray coverage
- Overhead irrigation should be minimized in favor of drip irrigation

Cultural control

Netting (primarily in tunnel production)

- Prevent flies from attacking fruit
- Must be applied before fruit begins to ripen
- Must be secured at bottom so flies cannot enter
- Mesh size should be very small: 1/32" (1 mm) mesh

Biological control

Biological control agents

Candidate species for biological control in quarantine

Promising species of parasitic wasps in permit process for field trials

SWD management

No action threshold for SWD

If fruit ripening and 1st SWD fly trapped:

- 1. Use registered insecticides from detection until harvest completed
- 2. Spray intervals should be relatively short (4-5 days)
- 3. Spray in evening when flies most active and pollinators not

Chemical control

Class (IRAC)	Trade name	Active ingredient	REI (hrs)	PHI (days)	Rate (per acre)	Probable efficacy
Carbamates (1A)	Sevin	Carbaryl	12	7	1-2 quarts	Good (JB)
	Lannate	Methomyl	48	3	%-1 lbs	Excellent
Organophosphates (1B)	Malathion	Malathion	12	1-2	1.5 – 2 pints	Good/ Excellent (JB
	Imidan	Phosmet	24	3	1.3 lb.	Excellent (JB
Pyrethroids and Pyrethrins (3A)	Bifenture/Brigade	Bifenthrin	12	12hrs	8 – 16 oz.	Good/ Excellent (JB
	Asana	esfenvalerate	12	7-14	4.8 – 9.6 fl. oz.	Excellent (JB
	Danitol	Fenpropathrin	24	2	10 ¾ – 21 ¼ fl. oz.	Excellent (JB
	Mustang Max	zeta-cypermethrin	12	1	4 oz.	Excellent (JB
	Pyganic OMRI	Pyrethrum	12	12hrs	16 - 64 oz.	Good/Fair
Spinosyns (5)	Entrust OMRI	Spinosad	4	1	1.25 - 2 oz.	Good
	Delegate	spinetoram	4	1-3	6 oz.	Excellent
	Success	Spinosad	4	1	4 – 6 fl. oz.	
	Radiant	Spinoteram	4	1	6 – 10 fl. oz.	Excellent

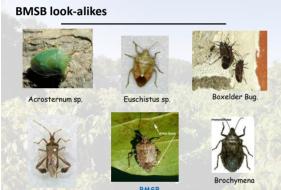
Chemical control

Homeowner Insecticides Labeled for Use against Spotted Wing Drosophila (SWD)						
Product Name	EPA Reg. No.	Active	Efficacy ¹	Fruit Crops Labeled for Use On:		
ONIDE CAPTAIN JACK'S DEADBUG BREW FLOWER & EGETABLE GARDEN DUST	4-479	Spinosed	Very good	apricots, cherries, nectarines, peaches, plums, prunes, bushberries ² and camberries ²		
ONIDE CAPTAIN JACK'S DEADBUS BREW CONCENTRATE	4-471	Spinosed	Very good	apricots, cherrifes, nectarines, peaches, plums, prunes, bushberries ¹⁴ , and caneberries ¹⁴		
ONIDE CAPTAIN JACK'S DEADBUG BREWIRTS	4-471	Spinosed	Very good	apricots, chemies, nectarines, peaches, plums, prunes, bushberries ²⁴ , and caneberries ²⁴		
ERTI-LOME BORER, BAGWORM, LEAFMINER & TENT ATTRRILLER SPRAY	62719-314-7401	Spinosed	Very good	apricots, chemies, nectarines, peaches, plums, prunes, and bushbanies ¹⁴		
ULLSEVE BIOINSECTIODE	62719-314-56872	Spinosed	Very good	apricots, cherries, nectarines, peaches, plums, prunes, and bushbentes ³⁴		
KONTEREY GARDEN INSECT SPRAY	62719-314-54705	Spinosed	Very good	apricots, cherries, nectarines, peaches, plums, prunes, and bushberries ^{3,4}		
ROTECT OR FIRD	62719-314-87130	Spinosed	Very good	apricots, chemies, nectarines, peaches, plums, prunes, bushberries ^{1,4} and caneberries ^{1,4}		
PINOSAD 0.5% SC	62719-31.4	Spinosed	Very good	apricots, chemies, nectarlines, peaches, plums, prunes, and bushbandes ^{k 4}		
RTHO BUGB GON SESTEM CINSECT KILLER DNCENTRATE	8033-107-239	Acetamlprid	Good	apple, pear, apricot, chemy (sweet and tart), nectarine, peach, plum (drikisaww, damson, Japanese), plumcot, prune (freih), grapes, strawberries and other low-growing berries, blueberries and other bush and caneberries ² .		
RTHO FLOWER FRUIT & VEGETABLE INSECT KILLER ONCENTRATE	8033-107-239	Aortamlprid	Good	apple, pear, apricot, cheny (weet and tart), nectarine, peach, plum (chicksaw, damson, Japanese), plumoot, prune (fresh), grapes, strassberries and other inaccroacies herries: blueherries and other		

Organic production

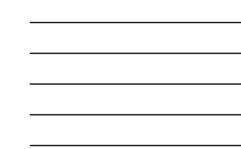
- Organic insecticides less effective than conventional
- Require more timely application
- Cultural controls even more important
- Rotate Entrust with Pyganic to achieve some resistance
- management

Post-harvest


Refrigeration

- Berries that have no visible damage should be placed directly in refrigerator
- Will slow down or stop SWD development if present, both hatched and unhatched
- Holding berries at 34°F for 72 hrs will kill most eggs and larger larvae
- Freezing berries will kill SWD

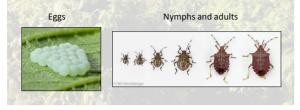
Brown marmorated stink bug (BMSB)


Hemiptera: Pentatomidae: Halyomorpha halys

Western Conifer Seed Bug

Life cycle

Adults come out of overwintering in spring (late March – June) Adults begin to feed and sexually mature in ~2 weeks


Lay eggs ~1 week intervals, June-Sept

Each female can lay ~250 eggs New generation of adults in mid to late summer

One generation in Wisconsin

Life cycle

- Adults emerge in spring, late March through June, depending on location, and begin to feed
- Each female can lay about 250 eggs in her lifetime
- New generation of adults appear in mid to late summer

Distribution

Native from Asia (China, Korea, Japan)


Probably came to US on shipping boat in 1996 (Allentown, PA)

Distribution

2019: detected in 44 U.S. states and 4 Canadian provinces

Distribution in Wisconsin

As of Jan 2020, 29 confirmed counties, 3 suspected Coordination with Krista Hamilton (DATCP) and PJ Liesch (UW)

Overwintering and pest status

 Adults overwinter in protected locations - natural rocky outcroppings, houses and structures, in bark of dead standing trees

• Adults sheltering in homes active on warm days in late winter (active in March this year in Madison)

of File and the law of the second sec

Host plants

Significant agricultural pest in some areas of the eastern US

- Tree fruits: apple, peach, cherry, pear,...
- Vegetables: peppers, tomatoes, asparagus...
- Fruits: berries, grapes, currant, melons,...
- Field crops: soybeans, corn,...
- Trees: maple, crabapple, oak, black cherry
 (feeds through the bark)

Damage in apple

- Injury severe and deep in flesh rendering fruit unacceptable for fresh market
- Each probing or feeding eventually results in visible injury

Slide credit Dr. Mike Raupp Univ. M

Damage in apple

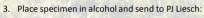
- A fruit grower in the Mid-Atlantic region reported loosing 45,000 bushels of apples to BMSB
- In apples alone, BMSB caused an estimated \$37 million in crop losses in the mid-Atlantic region in 2010
- In Mid-Atlantic, prior to BMSB, 4 6 insecticide applications each year. In 2010 growers applied > 20 applications in the season, and still suffered economic losses
- BMSB has set IPM back 4 decades in Mid-Atlantic!

Management options

- Population monitoring
 - Scouting especially along wooded edges
 - Pheromone traps
- Chemical control: neonicotinoids, pyrethroids, carbamates. Not necessary at this stage in WI gardens.
- Biological control: several native parasitoids (*Telenomus podisi*) and predators. Most promising: egg parasitoid *Trissolcus japonicus*

Biological control

Stopbmsb.org: "These stingerless warriors search for and destroy 60–90% of BMSB eggs in Asia"



Confirmation

If you find or suspect BMSB:

- Send a good photo of specimen to county office or PJ Liesch pliesch@wisc.edu
- 2. Bring specimen to county office

Insect Diagnostic Lab

- 1630 Linden Dr.
- University of Wisconsin Madison, WI 53706

https://insectlab.russell.wisc.edu/patrick-p-j-liesch/#

