

O.J. Noer Turfgrass Research and Education Facility

O.J. Noer Milorganite

3rd or 4th largest "crop" in Wisconsin at over 1 million acres Sod farms 0.8% Airports 1.4% Churches/cemeteries 1.7% Cities/towns 2.0% Schools/colleges 2.5% Parks/Rec areas 3.6% Golf Courses 3.6% Commercial property 5.3% Source: WI Ag Statistics Service

Value of Wisconsin Turf

- \$938 million on turf maintenance
- \$2.7 billion spent on turf equipment
- 454 Golf courses: \$20 million in taxes paid
- 92% of homeowners rated lawns as important to them

Turf vs. Turfgrass

Turf: A contiguous community of plants that persists under routine traffic and defoliation

2

- Turfgrass: turf forming
- Over 7,500 species of grass – less than 30 are turfgrasses

The Miocene Epoch

Forests shrunk, grasslands expanded. Animals adapted to eat grass, grasses adapted to being eaten.

eaten.

Science News

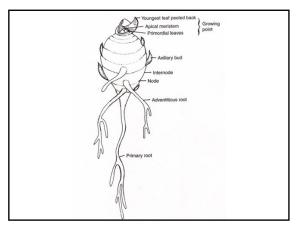
Six Million Years of Savanna: Grasslands, Wooded Grasslands
Accompanied Human Evolution

Science Daily (Alay 3, 2011) — University of Utah
scientists used chemical ledopes in ancient soil to
scientists used chemical ledopes in ancient soil to
and found that grassy, tree chefuted savannas
prevalled at most East African sites where human
ancestors and their age relatives evolved during the
past 6 million years.

We've been able to quarify how
much shade was available in the
geographic properties of the state of the state

7

Grass Anatomy

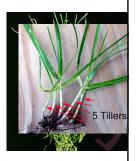

Crown:

Compressed stem; growing pt.

Apical meristem: 1-3 mm at top = leaf primordia

Axillary buds: tillers, stolons, rhizomes
Root primordia

10

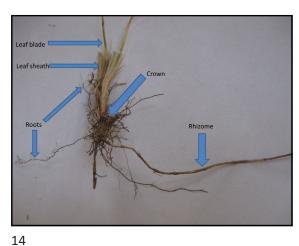


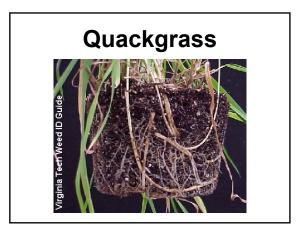
Bunch-Type Growth Habit

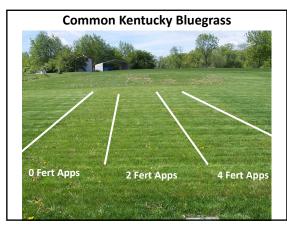

• spread by tillering

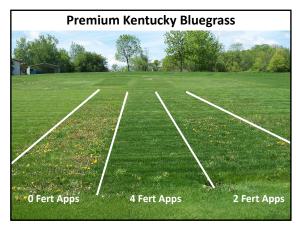
 Uniformity is problem long term or at low seeding rates

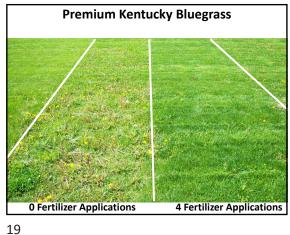
• Tall fescue, ryegrass, fine fescues

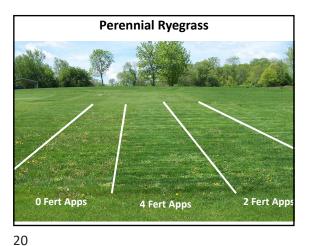


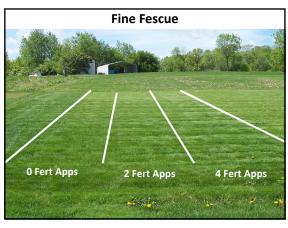

11 12

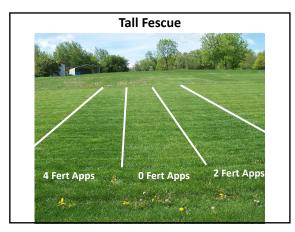

- Rhizomes are:
 - Belowground lateral shoots
 - Storage organs
- Kentucky bluegrass, creeping red fescue (weak!)





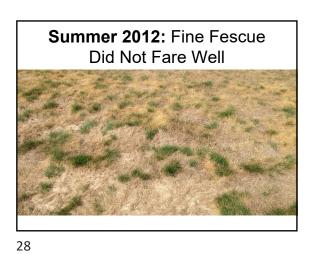

15



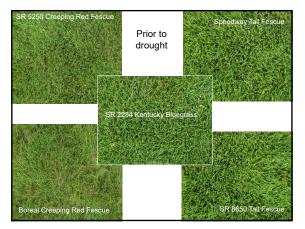


17 18

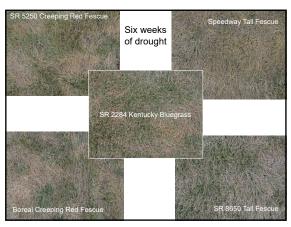
Low Input Sustainable Turfgrass Research


- No inputs, aside from monthly mowing
- · Soil: outstanding quality (deep, fertile, no compaction)

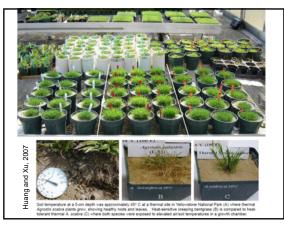
23 24


27

29 30



33



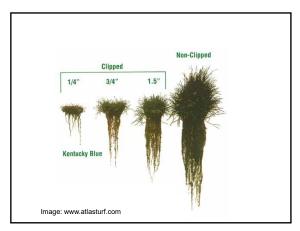
35 36

39 40

How much to irrigate?

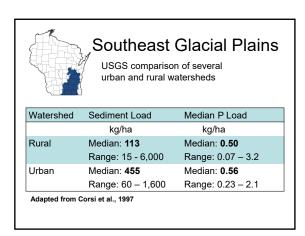
• To keep grass green usually 1 inch per week

• To keep crown alive apply 0.25 inches of water every 7 to 14 days

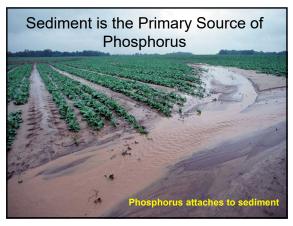


Footprints Photo: Karl Danneberger, Ohio State University

41 42



45 46



47 48

A Dense Ground Cover is Good for the Urban Environment

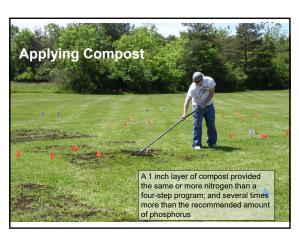
Reduces runoff
Reduces sediment losses
Reduces nutrient losses
Sequesters carbon
Increases groundwater recharge

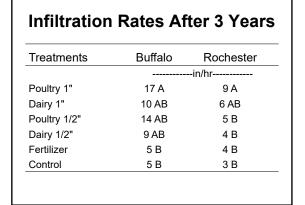
51 52

Baltimore Urban Ecosystem Study (Pickett et al., 2008)
"Lawns have features that can increase N retention. For example, they have permanent cover and low soil disturbance, and they photosynthesize and take up water and nutrients for a much longer portion of the year than do forests or agricultural ecosystems. Data from the Baltimore Ecosystem Study plots show that nitrate leaching and nitrous oxide flux from the soil to the atmosphere are not markedly higher in lawns than in forest. Perhaps even more interesting, variation among the lawns was not related to fertilizer input. Nutrient cycling in lawns is complex, and the effects of lawns on water quality are probably less negative than anticipated." (all emphasis mine)

Fertilization Effect on Phosphorus Losses from Turf			
Fertilization Program	Water runoff	Phosphorus loss	
	Inches/yr	lb/A/yr	
No fertilizer for two year	1.55 a	0.41 a	
Three times per year Milorganite (6-2-0)	1.04 b	0.25 b	
Three times per year Scotts Turf Builder	1.07 b	0.25 b	
Source: Kussow, 1997			

53 54





57

59 60

Recommended Timings Based on Research

- Sunny Lawn
 - Memorial Day (late May)
 - Resist the temptation to fertilizer earlier
 - July 4th (mid-summer)
 - Do not make this application if grass is brown or wilting from drought
 - Organic and other slow release fertilizers the best choice at this time
 - Labor Day (early Sept.)
 - · Fertilizing later in the year is less efficient

Recommended Timings Based on Research

- Shady Lawn or Older Lawn (>15 yrs)
 - Memorial Day (late May)
 - · Resist the temptation to fertilize earlier
 - Labor Day (early Sept.)
 - · Fertilizing later in the year is less efficient

61

62

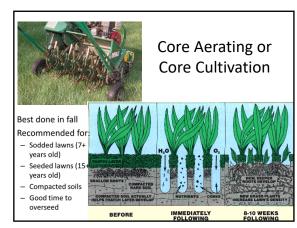
Mowing Practices

- · Proper height
 - Lawns: 2.5 to 3.5 inches
 - Stimulate dense turf
- Sharp mower blades
 - Turf heals faster
 - Less disease
 - Better appearance
- Good Mowing Practices Reduce Weeds

Weed Control

 Annual weeds like crabgrass can be prevented using a preemergent herbicide when forsythia are in full bloom

 Perennial weeds can be controlled near the time of first frost and/or during spring flowering phase



63

64

Insect Control

- Understanding the life cycle of the insect is critical
 - Is it a below ground feeder or above ground feeder?
 - Have the insect identified before selecting proper control
- White grubs are most common insect pest and are best controlled around 4th of July

Summary

- Some maintenance is a good thing! Turf density is important for improving water infiltration.
- Pick the right grass some require more maintenance than others.
- · Don't forget about the soil.

For More Information: Doug Soldat **UWEX Learning Store** djsoldat@wisc.edu learningstore.uwex.edu/ 608-263-3631 Organic and reduced-risk lawn care

70